
Supplementary Methods: RUV-inverse

Assume there are m arrays and n CpGs. Let Y be an m× n matrix such that Yij is the M -value for
the jth CpG on the ith array. We model Y as

Ym×n = Xm×pβp×n +Wm×kαk×n + εm×n (1)

where X is a matrix of biological factors of interest and W is a matrix of unknown, unwanted factors.
Optionally, we may also wish to include an additional Zγ term in the model, where Z is a matrix of
known covariates; see [?] for details. We assume that Rank [(X |W )] = p+ k < m.

We assume that X, W , and β are fixed. We assume that α and ε are random. The stochastic
assumptions on α and ε are:

εij ∼ N(0, σ2
j ) (2)

αij ∼ N(0, 1) (3)

α ⊥⊥ ε (4)

εij ⊥⊥ εi′j′ if (i, j) 6= (i′, j′) (5)

αij ⊥⊥ αi′j′ if (i, j) 6= (i′, j′) (6)

Note in particular that the variance of εij is allowed to differ for every CpG.
Let nc denote the number of negative controls. Let Yc denote the m× nc submatrix of Y containing

only the columns of the negative controls. Define βc, αc, and εc similarly. Assume that βc = 0; this is
the “negative control” assumption. It follows that

Yc = Wαc + εc. (7)

Define

G ≡ 1

nc
YcY

′
c

and note that
E [G] = WW ′ + σ̄2

cI

where

σ̄2
c ≡

1

nc

∑
jc

σ2
jc .

Here jc is an index variable that ranges over the indices of all of the negative controls. In words, σ̄2
c is

the average variance of the error terms of the negative controls.
Let Yj denote the jth column of Y and note that

Var [Yj ] = WW ′ + σ2
j I.

In practice, we do not expect expect the σ2
j to vary too greatly from CpG to CpG, and we therefore

assume that for all j, σ2
j is approximately equal to σ̄2

c , at least roughly. We may therefore consider G to
be a rough approximation of Var [Yj ]. See [?] for a more detailed discussion of this point.

We may now define the RUV-inverse estimator for β. We define β̂ as

β̂ ≡
[
X ′G−1X

]−1
X ′G−1Y. (8)

We observe that this is essentially a feasible generalized least squares (FGLS) estimator.
We calculate the standard errors using the inverse method, as described in [X]. We briefly summarize

the method here. The basic idea is to re-write (??) as

Y = X?β? +Xβ +Wα+ ε (9)
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where X? is an m × 1 matrix whose entries have been independently randomly generated following a
standard normal distribution, and where β? is 1 × n matrix whose entires are all 0. We then fit the
model, and calculate β̂?.

The variance of β̂?
j (conditional on X?) can be well-approximated by a known, linear function of σ2

j .

By inverting this function, σ2
j can be estimated as a function of β̂?

j . (This inversion is where the inverse

method gets its name.) The estimate of σ2
j obtained in this way will be very noisy, because it is obtained

using only one degree of freedom. However, by generating many different X?, repeating the process
many times, and averaging the resulting estimates of σ2

j , we obtain a much less noisy final estimate of

σ2
j . Once we have this estimate of σ2

j , we may then use it to calculate the variance of β̂j (conditional on
X), and thus the standard errors.

It is possible to work through this process analytically, so that it is actually not necessary to generate
random X? and fit the resulting models. Again, see [?] for the details. Here we simply state the result,
which can be expressed as a four-step procedure:

(1) Regress Yc on X. Let R denote the residuals, i.e. R ≡ Yc −X(X ′X)−1X ′Yc.

(2) Let UDU ′ be the eigendecomposition of RR′. Let di be the ith diagonal entry of D.

(3) Let Em×m be a diagonal matrix with diagonal entries

ei ≡


∫ ∞
0

dt

d2i (1 + 2t/d2i )
∏m−p

s

√
1 + 2t/d2s

if 1 ≤ i ≤ m− p

0 if m− p < i ≤ m

(4) Let σ̂2
j ≡ Y ′jUEU ′Yj
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